Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway.
نویسندگان
چکیده
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1(-/-)) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1(-/-) mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1(-/-) mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.
منابع مشابه
TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1...
متن کاملInvestigation of FGFR2-IIIC Signaling via FGF-2 Ligand for Advancing GCT Stromal Cell Differentiation
Giant cell tumor of bone (GCT) is an aggressive bone tumor consisting of multinucleated osteoclast-like giant cells and proliferating osteoblast-like stromal cells. The signaling mechanism involved in GCT stromal cell osteoblastic differentiation is not fully understood. Previous work in our lab reported that GCT stromal cells express high levels of TWIST1, a master transcription factor in skel...
متن کاملHeparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2.
Fibroblast growth factor-2 (FGF2) activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2) through its specific receptors. Interaction of FGF2 with cell-surface heparan sulfate proteoglycans has also been suggested to induce intracellular signals. Thus, we investigated whether FGF2 can stimulate ERK1/2 activation through heparan sulfate proteoglycans using mechanisms that do not de...
متن کاملHeparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal–Regulated Kinases
Fibroblast growth factor-2 (FGF2) activates the extracellular signal–regulated kinases 1 and 2 (ERK1/2) through its specific receptors. Interaction of FGF2 with cell-surface heparan sulfate proteoglycans has also been suggested to induce intracellular signals. Thus, we investigated whether FGF2 can stimulate ERK1/2 activation through heparan sulfate proteoglycans using mechanisms that do not de...
متن کاملPhosphoprotein Enriched in Astrocytes 15 kDa (PEA-15) Reprograms Growth Factor Signaling by Inhibiting Threonine Phosphorylation of Fibroblast Receptor Substrate 2α
Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 390 3 شماره
صفحات -
تاریخ انتشار 2009